Syllabus Module

Dept. Of Mathematics

Session: 2022-2023

Khatra Adibasi Mahavidyalaya

	Ser	nester -1(New)	
COURSE	COURSE	COURSE TOPIC	Teachers
CODE	TITLE		
SH/MTH/ 101/C-1	Calculus, Geometry & Vector Analysis	Unit 1 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{ax+bsinx}$, $e^{ax+bcosx}$, $(ax + b)^n sinx$, $(ax + b)^n cosx$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.	CDG
		Unit 2 Reduction formulae, derivations and illustrations of reduction formulae of the type $\int sin^n x dx$, $\int cos^n x dx$, $\int tan^n x dx$, $\int sec^n x dx \int (logx)^n dx$, $\int sin^m xcos^n x dx$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of sketching conics.	CDG
		Unit 3 Reflection properties of conics, Transformation of axes and second degree equations, Invariants, classification of conics	RB

		using the discriminant, Pair of	
		straight lines, polar equations	
		of straight lines, circles and conics.	
		Spheres, Cone, Cylindrical	
		surfaces. Central conicoids,	
		paraboloids, plane sections of	
		conicoids, Tangent, Normal,	
		Enveloping Cone and Cylinder,	
		Generating lines, classification of	
		quadrics, Transformation of axes in	
		space and general equation of	
		second degree.	
		Unit 4	CDG
		Product of three or more vectors,	CDG
		Applications in Geometry,	
		introduction to vector functions of	
		one independent variable,	
		operations with vector-valued	
		functions of one independent	
		variable,	
		limits and continuity of vector	
		•	
		functions, differentiation and	
		integration of vector functions of	
		one independent variable.	
SH/MTH/	Algebra	Unit 1	Al
,			
102/C-2		Polar representation of complex	
102/C-2		numbers, nth roots of unity, De	
102/C-2		numbers, nth roots of unity, De Moivre's theorem for rational	
102/C-2		numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications.	
102/C-2		numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation	
102/C-2		numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications.	
102/C-2		numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation	
102/C-2		numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients,	
102/C-2		numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation,	
102/C-2		numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation, Location of roots: Descartes rule of	
102/C-2		numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation, Location of roots: Descartes rule of signs, Sturm's theorem, Cubic and	
102/C-2		numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation, Location of roots: Descartes rule of signs, Sturm's theorem, Cubic and biquadratic equation,	
102/C-2		numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation, Location of roots: Descartes rule of signs, Sturm's theorem, Cubic and biquadratic equation, Cardon's, Ferrai's and Euler's	
102/C-2		numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation, Location of roots: Descartes rule of signs, Sturm's theorem, Cubic and biquadratic equation, Cardon's, Ferrai's and Euler's method.	

		Unit 2	AI
		Equivalence relations, partial order	
		relation, poset, linear order	
		relation. Well-ordering	
		property of positive integers,	
		Division algorithm, Divisibility and	
		Euclidean algorithm. Prime	
		numbers and their properties,	
		Euclid's theorem. Congruence	
		relation between integers.	
		Principles of	
		Mathematical Induction, statement	
		of Fundamental Theorem of	
		Arithmetic	
		Unit 3	MN
		Systems of linear equations, row	
		reduction and echelon forms,	
		vector equations, the matrix	
		equation Ax=b, solution sets of	
		linear systems, applications of	
		linear systems, linear	
		independence	
		Unit 4	MN
		Introduction to linear	
		transformations, matrix of a linear	
		transformation, inverse of a matrix,	
		characterizations of invertible	
		matrices. Subspace of \mathbb{R}^n ,	
		dimension of subspaces of \mathbb{R}_n ,	
		Geometric significance of	
		subspaces. Rank of a matrix, Eigen	
		values, Eigen Vectors and	
		Characteristic Equation of a matrix.	
		Cayley-Hamilton theorem and its	
		use in finding the inverse	
		of a matrix.	
SH/MTH/	Calculus,	Unit 1	AI
102/05 1		Hyperbolic functions, higher order	
103/GE-1	Geometry &		
103/GE-1	Geometry & Vector	derivatives, Leibnitz rule and its applications to problems of types	

b) ⁿ sinx, (ax + b) ⁿ cosx, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.	
Unit 2 Reduction formulae, derivations and illustrations of reduction formulae of the type $\int sin^n x dx$, $\int cos^n x dx$, $\int tan^n x dx$, $\int sec^n x dx \int (logx)^n dx$, $\int sin^m x cos^n x dx$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of sketching conics.	AI
Unit 3 Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics. Spheres. Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids, Generating lines, classification of quadrics, Illustrations of graphing standard quadric surfaces like cone, ellipsoid.	AI
Unit 4 Product of three or more vectors, Applications in Geometry, introduction to vector functions of one independent variable, operations with vector-valued functions of one independent variable, limits and continuity of vector	AI

functions, differentiation and	
integration of vector functions of	
one independent variable.	

SEMESTER – II(New)

COURSE CODE	COURSE TITLE	COURSE TOPIC	Teachers
SH/MTH/ 201/C-3	Real Analysis	Unit 1 Review of Algebraic and Order Properties of R, ε-neighbourhood of a point in R. Idea of countable sets, uncountable sets and uncountability of R. Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets. Suprema and Infima. Completeness Property of R and its equivalent properties. The Archimedean Property, Density of Rational (and Irrational) numbers in R, Intervals. Limit points of a set, Isolated points, Open set, closed set, derived set, Illustrations of Bolzano-Weierstrass theorem for sets, compact sets in R, Heine-Borel Theorem.	AI
		Unit 2 Sequences, Bounded sequence, Convergent sequence, Limit of a sequence, lim inf, lim sup. Limit Theorems. Monotone Sequences, Monotone Convergence Theorem. Subsequences, Divergence Criteria. Monotone Subsequence Theorem (statement only), Bolzano Weierstrass Theorem for Sequences. Cauchy sequence, Cauchy's Convergence Criterion.	RB
		Unit 3 Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence:	RB

		Comparison test, Limit Comparison	
		test, Ratio Test, Cauchy's nth root	
		test, Integral test. Alternating series,	
		Leibniz test. Absolute and	
O. I. /B.4.T. I. /		Conditional convergence.	
SH/MTH/	Group Theory-I	Unit 1	CDG
202/C-4		Lipschitz condition and Picard's	
		Theorem (Statement only). General	
		solution of homogeneous equation	
		of second order, principle of super	
		position for homogeneous equation,	
		Wronskian: its properties and	
		applications, Linear homogeneous	
		and non-homogeneous equations of	
		higher order with constant	
		coefficients, Euler's equation,	
		method of undetermined	
		coefficients, method of variation of	
		parameters.	
		Unit 2	CDG
		Systems of linear differential	0.0
		equations, types of linear systems,	
		differential operators, an operator	
		method for linear systems with	
		constant coefficients,	
		Basic Theory of linear systems in	
		normal form, homogeneous linear	
		systems with constant coefficients:	
		Two Equations in two unknown	
		functions.	
		Unit 3	CDC
		Equilibrium points, Interpretation of	CDG
		the phase plane	
		Power series solution of a	
		differential equation about an	
		ordinary point, solution about a	
		regular singular point.	
		Unit 4	CDG
		Triple product, introduction to vector	
		functions, operations with vector-	
		valued functions, limits and	
		continuity of vector functions,	
		differentiation and integration of	
		vector functions.	

SH/MTH/	Algebra	Unit 1	MN
203/GE-2		Review of Algebraic and Order	
		Properties of R, ε -neighbourhood	
		of a point in R. Idea of countable	
		sets, uncountable sets and	
		uncountability of R. Bounded above	
		sets, Bounded below sets, Bounded	
		Sets, Unbounded sets. Suprema and	
		Infima. Completeness Property of R	
		and its equivalent properties. The	
		Archimedean Property, Density of	
		Rational (and Irrational) numbers in	
		R, Intervals. Limit points of a set,	
		Isolated points, Open set, closed	
		set, derived set, Illustrations of	
		Bolzano-Weierstrass theorem for	
		sets, compact sets in R, Heine-Borel	
		Theorem.	
		Unit 2	MN
		Sequences, Bounded sequence,	
		Convergent sequence, Limit of a	
		sequence, lim inf, lim sup. Limit	
		Theorems. Monotone Sequences,	
		Monotone Convergence Theorem.	
		Subsequences, Divergence Criteria.	
		Monotone Subsequence Theorem	
		(statement only), Bolzano	
		Weierstrass Theorem for	
		Sequences. Cauchy sequence,	
		Cauchy's Convergence Criterion.	
		Unit 3	MN
		Infinite series, convergence and	
		divergence of infinite series, Cauchy	
		Criterion, Tests for convergence:	
		Comparison test, Limit Comparison	
		test, Ratio Test, Cauchy's nth root	
		test, Integral test. Alternating series,	
		Leibniz test. Absolute and	
		Conditional convergence.	
	SEI	MESTER - III	
COURSE	COURSE	COURSE TOPIC	Teachers

CODE	TITLE		
SH/MTH/ 301/C-5	Theory of Real Functions & Introduction to Metric Space	Unit 1 Limits of functions (ε - δ approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity and discontinuity. Algebra of continuous functions. Continuous functions on an interval, intermediate value theorem, location of roots theorem, preservation of intervals theorem. Uniform continuity, non-uniform continuity criteria, uniform	CDG
		Unit 2 Differentiability of a function at a point and in an interval, Caratheodory's theorem, algebra of differentiable functions. Relative extrema, interior extremum theorem. Rolle's theorem. Mean value theorem, intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials.	CDG
		Unit 3 Cauchy's mean value theorem. Taylor's theorem with Lagrange's form of remainder, Taylor's theorem with Cauchy's form of remainder, application of Taylor's theorem to convex functions, relative extrema. Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions, $ln(1 + x)$, $1/ax + b$. Application of Taylor's theorem to inequalities.	CDG
		Unit 4	RB

	Numerical	i itolativo, Absoluto, Noulla Ulli	i
/303/C-7	Methods	Algorithms. Convergence. Errors: Relative, Absolute. Round off.	
SH/MTH	Numerical	Unit 1	AI
		isomorphisms. First, Second and Third isomorphism theorems.	
		theorem, properties of	
		of homomorphisms, Cayley's	
		Group homomorphisms, properties	IVII
		Unit 5	MN
		theorem for finite abelian groups.	
		subgroups, factor groups, Cauchy's	
		External direct product of a finite number of groups, normal	
			MN
		including Fermat's Little theorem. Unit 4	NAN'
		theorem and consequences	
		properties of cosets, Lagrange's	
		permutations, alternating group,	
		permutations, even and odd	
		permutations, properties of	
		groups. Cycle notation for	
		classification of subgroups of cyclic	
		Properties of cyclic groups,	
		Unit 3	MN
		subgroups.	
		centre of a group, product of two	
		subgroups, centralizer, normalizer,	
		Subgroups and examples of	10114
		Unit 2	MN
		groups.	
		matrices), elementary properties of	
		and quaternion groups (through	
		groups, definition and examples of groups including permutation groups	
302/ C-6		Symmetries of a square, Dihedral groups, definition and examples of	
SH/MTH/	Group Theory-I	Unit 1	MN
		dense sets, separable spaces.	
		set, diameter of a set, subspaces,	
		a set. Limit point of a set, closed	
		neighbourhood, open set, interior of	
		examples. Open and closed balls,	
		Metric spaces: Definition and	

	Methods Lab	Unit 2	AI
		Transcendental and Polynomial	
		equations: Bisection method,	
		Newton's method, Secant method,	
		Regula-falsi method, fixed point	
		iteration, Newton-Raphson method.	
		Rate of convergence of these	
		methods.	
		Unit 3	AI
		System of linear algebraic	
		equations: Gaussian Elimination and	
		Gauss Jordan methods. Gauss	
		Jacobi method, Gauss Seidel	
		method and their convergence	
		analysis. LU Decomposition	
		Unit 4	AI
		Interpolation: Lagrange and	
		Newton's methods. Error bounds.	
		Finite difference operators. Gregory	
		forward and backward difference	
		interpolation.	
		Numerical differentiation: Methods	
		based on interpolations, methods	
		based on finite differences.	
		Unit 5	Al
		Numerical Integration: Newton	
		Cotes formula, Trapezoidal rule,	
		Simpson's 1/3rd rule, Simpsons 3/8th	
		rule, Weddle's rule, Boole's Rule.	
		Midpoint rule, Composite	
		Trapezoidal rule, Composite	
		Simpson's 1/3rd rule, Gauss quadrature formula.	
		The algebraic eigenvalue problem:	
		Power method.	
		Approximation: Least square	
		polynomial approximation.	
SH/MTH /	Algebra (GET2)	Unit 1	CDC
304/GE-3	AISENIA (GLTZ)	Polar representation of complex	CDG
		numbers, nth roots of unity, De	
		Moivre's theorem for rational indices	
		and its applications.	
		Theory of equations: Relation	
		between roots and coefficients,	
		between roots and coefficients,	

		Transformation of equation, Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving AM ≥ GM ≥ HM, Cauchy-Schwartz inequality. Unit 2 Equivalence relations. Functions, Composition of functions, Invertible functions, One to one correspondence and cardinality of a set. Well-ordering property of positive integers, Division algorithm, Divisibility and Euclidean algorithm.	CDG
		Congruence relation between integers. Principles of Mathematical Induction, statement of Fundamental Theorem of Arithmetic. Unit 3 Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation Ax=b, solution sets of linear systems, applications of linear systems, linear independence. Unit 4	RB RB
		Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix	
SH/MTH / 305/SEC-1	Programming using C (New)		AI

	SEN	MESTER - IV	
COURSE	COURSE	COURSE TOPIC	Teachers
CODE	TITLE		
SH/MTH /401/C-8	Riemann Integration and Series of Functons	Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums, equivalence of two Definitions. Riemann integrability of monotone and continuous functions, Properties of the Riemann integral; definition and integrability of piecewise continuous and monotone functions. Intermediate Value theorem for Integrals. Fundamental theorem of Integral Calculus.	MN
		Unit 2 Improper integrals. Convergence of Beta and Gamma functions.	MN
		Unit 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions; Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for uniform convergence and Weierstrass M-Test.	MN
		Unit 4 Fourier series: Definition of Fourier coefficients and series, Reimann Lebesgue lemma, Bessel's inequality, Parseval's identity,	MN

		Dirichlet's condition.	
		Examples of Fourier expansions and	
		summation results for series.	
		Unit 5	MN
		Power series, radius of convergence,	
		Cauchy Hadamard Theorem.	
		Differentiation and integration of	
		power series; Abel's Theorem;	
		Weierstrass Approximation	
		Theorem.	
SH/MTH/402/C-	Multivariate	Unit 1	AI
9	Calculus	Functions of several variables, limit	
		and continuity of functions of two or	
		more variables	
		Partial differentiation, total	
		differentiability and differentiability,	
		sufficient condition for	
		differentiability. Chain rule for one	
		and two independent parameters,	
		directional derivatives, the gradient,	
		maximal and normal property of the	
		gradient, tangent planes, Extrema of	
		functions of two variables, method	
		of Lagrange multipliers, constrained	
		optimization problems	
		Unit 2	Al
		Double integration over rectangular	
		region, double integration over non-	
		rectangular region, Double integrals	
		in polar co-ordinates, Triple	
		integrals, Triple integral over a	
		parallelepiped and solid regions.	
		Volume by triple integrals, cylindrical	
		and spherical co-ordinates. Change of variables in double integrals and	
		triple integrals	
		Unit 3	AI
		Definition of vector field, divergence and curl.	
		Line integrals, Applications of line	
		integrals: Mass and Work.	
		Fundamental theorem for line	
		integrals, conservative vector fields,	
		independence of path.	
		muependence of path.	

SH/MTH	Ring Theory and	Unit 4 Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, The Divergence theorem. Unit 1	AI
/403/C-10	Linear Algebra-I	Definition and examples of rings, properties of rings, subrings, integral domains and fields, characteristic of a ring. Ideal, ideal generated by a subset of a ring, factor rings, operations on ideals, prime and maximal ideals.	RB
		Unit 2 Ring homomorphisms, properties of ring homomorphisms. Isomorphism theorems I, II and III, field of quotients.	RB
		Unit 3 Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces.	RB
		Unit 4 Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations. Isomorphisms. Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.	RB
SH/MTH /404/GE-4	Differential Equations and Vector Calculus (GET4)	Unit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous	CDG

		and non-homogeneous equations of higher order with constant coefficients, Euler's equation, method of undetermined coefficients, method of variation of parameters. Unit 2 Systems of linear differential equations, types of linear systems, differential operators, an operator method for linear systems with constant coefficients, Basic Theory of linear systems in normal form, homogeneous linear systems with constant coefficients: Two Equations in two unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a	CDG
		differential equation about an ordinary point, solution about a regular singular point.	
		Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions.	CDG
SH/MTH / 405/SEC-2	Graph Theory (SEC T4)	Unit 1 Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bi - partite graphs isomorphism of graphs.	RB

Unit 2 Eulerian circuits, Eulerian graph, semi-Eulerian graph, theorems, Hamiltonian cycles, theorems Representation of a graph by matrix, the adjacency matrix, incidence matrix, weighted graph,	RB
Unit 3 Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Dijkstra's algorithm, Warshall algorithm.	RB

	SEMESTER - V					
COURSE	COURSE	COURSE TOPIC	Teachers			
CODE	TITLE					
SH/MTH / 501/C-11	Partial Differential Equations and Applications	Unit 1 Partial Differential Equations – Basic concepts and Definitions. Mathematical Problems. First- Order Equations: Classification, Construction and Geometrical Interpretation. Method of Characteristics for obtaining General Solution of Quasi Linear Equations. Canonical Forms of First-order Linear Equations. Method of Separation of Variables for solving first order partial differential equations. Unit 2 Derivation of Heat equation, Wave equation and Laplace equation. Classification of second order linear equations as hyperbolic, parabolic or	RB			
		elliptic. Reduction of second order Linear Equations to canonical forms.				
		Unit 3	RB			

	Í.	Unit 4	MN
		theorem. Index theorem.	
		actions. Generalized Cayley's	
		action. Applications of group	
		associated with a given group	
		kernels, permutation representation	
		Group actions, stabilizers and	MN
		abelian groups. Unit 3	N/INI
		Fundamental Theorem of finite	
		internal direct products,	
		n as an external direct product,	
		products, the group of units modulo	
		Properties of external direct	
		Unit 2	MN
		properties.	
		Commutator subgroup and its	
		groups, Characteristic subgroups,	
		factor groups to automorphism	
		infinite cyclic groups, applications of	
		automorphism groups,	
502/C-12	II	automorphism groups,	
SH/MTH /	Group Theory -	Automorphism, inner automorphism,	MN
SH/MTH/	Group Thoory	Unit 1	NANI
		modelling ballistics and planetary motion, Kepler's second law.	
		components of acceleration,	
		varying mass, tangent and normal	
		Central force. Constrained motion,	
		Unit 4	AI
		problem	
		Solving the Heat Conduction	
		Solving the Vibrating String Problem.	
		Method of separation of variables,	
		Homogeneous Wave Equation.	
		boundary conditions. Non-	
		Equations with non-homogeneous	
		Semi-Infinite String with a Free end.	
		Infinite String with a fixed end,	
		Boundary Value Problems. Semi-	
		problem of an infinite string. Initial	
		The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy	

conjugation, class equation and consequences, conjugacy in Sn, p-groups, Sylow's theorems and consequences, Cauchy's theorem, Simplicity of An for n ≥ 5, nonsimplicity tests. SH/MTH / 503/DSE-1 Programming (DSE T1) Unit 1 Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two - phase method. Big - M method and their comparison. Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving transportation problems are significant to solution, algorithm for solving transportation problems are significant to solution.
groups, Sylow's theorems and consequences, Cauchy's theorem, Simplicity of An for n ≥ 5, nonsimplicity tests. SH/MTH / Linear
consequences, Cauchy's theorem, Simplicity of An for n ≥ 5, non- simplicity tests. SH/MTH / 503/DSE-1 Linear Programming (DSE T1) Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two - phase method. Big - M method and their comparison. Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
Simplicity of An for n ≥ 5, non- simplicity tests. SH/MTH / 503/DSE-1 Programming (DSE T1) Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two - phase method. Big - M method and their comparison. Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
SH/MTH / 503/DSE-1 Programming (DSE T1) Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two - phase method. Big - M method and their comparison. Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
SH/MTH / 503/DSE-1 Programming (DSE T1) Linear Programming (DSE T1) Unit 1 Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two - phase method. Big - M method and their comparison. Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
Programming (DSE T1) Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two - phase method. Big - M method and their comparison. Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
Dose T1 Programming (DSE T1) Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two - phase method. Big - M method and their comparison. Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two - phase method. Big - M method and their comparison. Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two - phase method. Big - M method and their comparison. Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
simplex algorithm, simplex method in tableau format, introduction to artificial variables, two - phase method. Big - M method and their comparison. Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
in tableau format, introduction to artificial variables, two - phase method. Big - M method and their comparison. Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
artificial variables, two - phase method. Big - M method and their comparison. Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
method. Big - M method and their comparison. Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
CDG Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving
approximation method for determination of starting basic solution, algorithm for solving
determination of starting basic solution, algorithm for solving
solution, algorithm for solving
two population and blancast and
transportation problem, assignment
problem and its mathematical
formulation, Hungarian method for
solving assignment problem.
Unit 3 CDG
Game theory: formulation of two
person zero sum games, solving two
person zero sum games, games with
mixed strategies, graphical solution
procedure, linear programming
solution of games.
SH/MTH / Probability and Unit 1 AI
504/DSE- Statistics (DSE Sample space, probability axioms,
2 T4) real random variables (discrete and
continuous), cumulative distribution
function, probability mass/density

COURSE	COURSE TOPIC	Teachers
SI	EMESTER – VI	
	Random Samples, Sampling Distributions, Estimation of parameters, Testing of hypothesis.	
	expectations, independent random variables, bivariate normal distribution, correlation coefficient, joint moment generating function (jmgf) and calculation of covariance (from jmgf), linear regression for two variables. Unit 3 Chebyshev's inequality, statement and interpretation of (weak) law of large numbers and strong law of large numbers. Central Limit theorem for independent and identically distributed random variables with finite variance, Markov Chains, Chapman-Kolmogorov equations, classification of states. Unit 4 Random Samples, Sampling	AI
	functions, mathematical expectation, moments, moment generating function, characteristic function, discrete distributions: uniform, binomial, Poisson, geometric, negative binomial, continuous distributions: uniform, normal, exponential. Unit 2 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions, expectation of function of two random variables, conditional	AI

CODE	TITLE		
SH/MTH / 601/C-13	Metric Spaces and Complex Analysis	Unit 1 Metric spaces: Sequences in metric spaces, Cauchy sequences. Complete Metric Spaces, Cantor's	RB
		Unit 2 Continuous mappings, sequential criterion and other characterizations of continuity. Uniform continuity. Connectedness, connected subsets of R. Compactness: Sequential compactness, Heine-Borel property, Totally bounded spaces, finite intersection property, and continuous functions on compact sets. Homeomorphism. Contraction mappings. Banach's Fixed point Theorem and its application to ordinary differential equation.	RB
		Unit 3 Limits, Limits involving the point at infinity, continuity. Properties of complex numbers, regions in the complex plane, functions of complex variable, mappings. Derivatives, differentiation formulas, Cauchy-Riemann equations, sufficient conditions for differentiability.	RB
		Unit 4 Analytic functions, examples of analytic functions, exponential function, Logarithmic function, trigonometric function, derivatives of functions, and definite integrals of functions. Contours, Contour integrals and its examples, upper bounds for moduli of contour integrals. Cauchy- Goursat theorem, Cauchy integral formula.	RB

		Unit 5 Liouville's theorem and the fundamental theorem of algebra. Convergence of sequences and series, Taylor series and its examples. Unit 6 Laurent series and its examples, absolute and uniform convergence of power series.	RB
SH/MTH / 602/C-14	Ring Theory and Linear Algebra II	Unit 1 Polynomial rings over commutative rings, division algorithm and consequences, principal ideal domains, factorization of polynomials, reducibility tests, irreducibility tests, Eisenstein criterion, and unique factorization in Z [x]. Divisibility in integral domains, irreducible, primes, unique factorization domains, Euclidean domains.	CDG
		Unit 2 Dual spaces, dual basis, double dual, transpose of a linear transformation and its matrix in the dual basis, annihilators. Eigen spaces of a linear operator, diagonalizability, invariant subspaces and Cayley-Hamilton theorem, the minimal polynomial for a linear operator, canonical forms.	CDG
		Unit 3 Inner product spaces and norms, Gram-Schmidt orthogonalisation process, orthogonal complements, Bessel's inequality, the adjoint of a linear operator. Least Squares Approximation, minimal solutions to systems of linear equations. Normal and self-adjoint operators. Orthogonal projections and Spectral theorem.	CDG

SH/MTH/	Number Theory	Unit 1	MN
603/DSE-3	(DSE T7)	Linear Diophantine equation, prime	
		counting function, statement of	
		prime number theorem, Goldbach	
		conjecture, linear congruences,	
		complete set of residues, Chinese	
		Remainder theorem, Fermat's Little	
		theorem, Wilson's theorem.	
		Unit 2	MN
		Number theoretic functions, sum	
		and number of divisors, totally	
		multiplicative functions, definition	
		and properties of the Dirichlet	
		product, the Mobius Inversion	
		formula, the greatest integer	
		function, Euler's phi - function,	
		Euler's theorem, reduced set of	
		residues. some properties of Euler's	
		phi-function.	
		Unit 3	MN
		Order of an integer modulo n,	
		primitive roots for primes, composite	
		numbers having primitive roots,	
		Euler's criterion, the Legendre	
		symbol and its properties, quadratic	
		reciprocity, quadratic congruences	
		with composite moduli. Public key	
		encryption, RSA encryption and	
		decryption, the equation x2 + y2=	
		z2, Fermat's Last theorem.	
SH/MTH/	Project Work		Al
604/ DSE- 4			
.,			